Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Deepak Chopra, ${ }^{\text {a }}$ T. P. Mohan, ${ }^{\text {b }}$ K. S. Rao ${ }^{\text {b }}$ and T. N. Guru Row ${ }^{\text {a }}$
${ }^{\text {a }}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ${ }^{\mathbf{b}}$ Rallis India Limited, Peenya Industrial Area, Bangalore 560 078, India

Correspondence e-mail:
deepak@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.016 \AA$
R factor $=0.097$
$w R$ factor $=0.231$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(1,1,2,2-Tetrachloroethylsulfanyl)-3a,4,7,7a-tetrahydro- 1 H -isoindole-1,3(2H)-dione

The title compound (also known as captafol), $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{4} \mathrm{NO}_{2} \mathrm{~S}$, exhibits fungicidal activity. The six-membered ring exists in a boat conformation. The crystal packing is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions.

Comment

An important aspect of the rational design of bioactive molecules involves the search for structure-activity relationships (Lewis et al., 1991). The conformation of the molecule is found to influence the level of biological activity of the proper compound (Baughman \& Jacobson, 1978). The correlations found between the crystal structures of some compounds and their biological activity have aided in the chemical design of few active agrochemicals (Rohrbaugh \& Jacobson, 1978). Earlier, the activity of a series of triazolyl ketone herbicides (Anderson et al., 1983) has been investigated along with the fungicidal activities of N-phenylsuccinamides (Zenei et al., 1988).

(I)

We present here the crystal structure of the title compound, (I) (Fig. 1), which posesses fungicidal activity. Atoms H4 and H5 at the fused ring junction have a cis relationship. The puckering parameters (Cremer \& Pople, 1975), generated by PLATON (Spek, 2003), for the six-membered cyclohexene ring are $q_{2}=0.557(13) \AA, \varphi_{2}=117.3(12)^{\circ}$ and $\tau=91.7(12)^{\circ}$, indicating a boat conformation. The crystal structure is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (Table 1) which link the molecules into linear chains along the c axis (Fig. 2).

Experimental

The title compound was obtained from Rallis India, Bangalore. Single crystals were grown by slow evaporation of a mixture of ethyl acetate/ benzene at 278 K .

Received 11 November 2004 Accepted 17 November 2004 Online 27 November 2004

Figure 1
View of (I), shown with 50% probability displacement ellipsoids.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{4} \mathrm{NO}_{2} \mathrm{~S} \\
& M_{r}=349.04 \\
& \text { Monoclinic, } P 2_{d} / c \\
& a=10.567(8) \AA \\
& b=6.674(5) \AA \\
& c=19.427(15) \AA \\
& \beta=91.715(12)^{\circ} \\
& V=1369.6(18) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.683 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

$$
\text { Cell parameters from } 675
$$

reflections

$$
\theta=2.2-26.4^{\circ}
$$

$$
\begin{aligned}
& \mu=1.01 \mathrm{~mm}^{-1} \\
& \mu=2.4
\end{aligned}
$$

$$
T=293(2) \mathrm{K}
$$

Rod, colorless

$$
0.22 \times 0.07 \times 0.06 \mathrm{~mm}
$$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.809, T_{\text {max }}=0.942$
8949 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.097$
$w R\left(F^{2}\right)=0.231$
$S=1.17$
2449 reflections
167 parameters
H -atom parameters constrained

Table 1
Intermolecular contacts $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{2}$	0.93	2.65	$3.545(15)$	$163(1)$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.97	2.88	$3.616(13)$	$134(1)$

Symmetry codes: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$.
All H atoms were placed in idealized positions ($0.93-0.98 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The maximum positive peak in the difference Fourier map was located $1.15 \AA$ from atom S1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine

Figure 2

Packing diagram of (I), showing the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ contacts (dashed lines).
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

We thank the Department of Science and Technology, India, for data collection on the CCD facility set up under the IRHPA-DST program. D. Chopra thanks the CSIR, India, for a Junior Research Fellowship.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Anderson, N. H., Heritage, K. J. \& Branch, S. K. (1983). Quantitative Approaches to Drug Design, edited by J. C. Dearden, p. 47. Amsterdam: Elsevier.
Baughman, R. G. \& Jacobson, R. A. (1978). J. Agric. Food Chem. 26, 403-407. Bruker (2000). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lewis, R. J., Camilleri, P., Kirby, A. J., Marby, C. A., Slawin, A. A. \& Williams, D. J. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1625-1631.

Rohrbaugh, W. J. \& Jacobson, R. A. (1978). J. Agric. Food Chem. 26, 11201124.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Zenei, T., Takayami, C. \& Terada, H. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 1439-1445.

